

Strong convergence theorems for mixed type asymptotically nonexpansive mappings in hyperbolic spaces

S. Jone Jayashree^{1*} and A. Anthony Eldred²

Abstract

In this paper, we prove strong convergence theorems for mixed type asymptotically nonexpansive self and nonself mappings namely S_1, S_2 and T_1, T_2 respectively on a uniformly convex Hyperbolic space (X,d,H), Using a two step iterative scheme as follows:

$$x_{n+1} = P(H(S_1^n x_n, T_1(PT_1)^{n-1} y_n, \alpha_n))$$

$$y_n = P(H(S_2^n x_n, T_2(PT_2)^{n-1} x_n, \beta_n))$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0,1) and P is a projection on X.

Keywords

Uniformly convex Hyperbolic space; strong convergence; common fixed point; mixed type asymptotically nonexpansive mapping.

AMS Subject Classification

47H10.

Article History: Received 01 February 2020; Accepted 29 March 2020

©2020 MJM.

Contents

1	Introduction	. 380
2	Preliminaries	. 381
3	Main Results	381
	References	. 384

1. Introduction

For asymptotically nonexpansive self-mappings in Banach spaces[2-16], introduced by Goebel and Kirk [1] in 1972, which is an important generalization of the class of nonexpansive self-mappings, some authors proved weak and strong convergence theorems, which extend and improve this result of Goebel and Kirk in several ways. Intially Goebel and Kirk proved that if K is a nonempty closed subset of a real uniformly convex Banach space E and T is an asymptotically nonexpansive self-mapping of K, then T has a fixed point. Recently, Chidume et al.[10] introduced the concept

of asymptotically nonexpansive nonself-mappings which is a generalization of asymptotically nonexpansive self-mapping.

The following iterative scheme was studied in 2003, by Chidume et al.[10]: For a nonempty closed convex subset K of a real uniformly convex Banach space E,

$$\begin{cases} x_1 & \in K \\ x_{n+1} & = P((1 - \alpha_n)x_n + \alpha_n T_1(PT_1)^{n-1} x_n) \end{cases}$$
 (1.1)

for each $n \ge 1$, P is a nonexpansive retraction of E onto K, and $\{\alpha_n\}$ a sequence in (0,1). For an asymptotically nonexpansive nonself-mapping, the authors also proved some strong and weak convergence theorems.

A generalization of (1.1) was given in 2006 by Wang [11] as follows:

$$\begin{cases} x_1 & \in K \\ x_{n+1} & = P((1-\alpha_n)x_n + \alpha_n T_1(PT_1)^{n-1}y_n) \\ y_n & = P((1-\beta_n)x_n + \beta_n T_2(PT_2)^{n-1}x_n) \end{cases}$$
(1.2)

¹ Department of Mathematics, Holy Cross College, Trichy-620002, Tamil Nadu, India.

² Department of Mathematics, St. Joseph's College, Trichy-620002, Tamil Nadu, India.

^{*}Corresponding author: 1 jone-shree@rediffmail.com; 2 anthonyeldred@yahoo.co.in

for each $n \ge 1$, $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0,1) and $T_1, T_2 : K \to E$ are two asymptotically nonexpansive nonself-mappings. Wang proved some strong and weak convergence theorems for two asymptotically nonexpansive nonself-mappings.

For the iteration process (1.2), recently Guo and Guo[12] proved some new weak convergence theorems.

In this paper we prove some strong convergence theorems on uniformly convex Hyperbolic spaces, by constructing a new iteration scheme of mixed type for each of two asymptotically nonexpansive self-mappings and nonself-mappings, in particular on uniformly convex Hyperbolic spaces.

2. Preliminaries

Definition 2.1. For any non empty subset K of a real metric space (X,d), any $S: K \to K$ is said to be an asymptotically nonexpansive self-mapping if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that,

$$d(S^n x, S^n y) \le k_n d(x, y) \tag{2.1}$$

for all $x, y \in K$ and $n \ge 1$

Definition 2.2. Any mapping $f: X \to K$, where K is a mapping subset of a real metric space (X,d) is called as an retraction if,

$$f^2 = f (2.2)$$

Note 2.3. If f is a retraction then fy = y for all y in the range of f and we also say that K is a retract of X.

Definition 2.4. [10] For any nonempty subset K of a real metric space (X,d), let $P: X \to K$ be a nonexpansive retraction of X onto K. Then, $T: K \to X$ is said to be an asymptotically nonexpansive nonself-mapping if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $k_n \to 1$ as $n \to \infty$ such that

$$d(T(PT)^{n-1}x, T(PT)^{n-1}y) \le k_n d(x, y)$$
(2.3)

Definition 2.5. A triplet (X,d,H) is said to be a Hyperbolic metric space if (X,d) is a metric space and $H: X \times X \times [0,1] \to X$ is a function such that, for all $u,v,w,z \in X$ and $\beta,\gamma \in [0,1]$, the following hold:

$$1.d(u, H(u, v, \beta)) \le (1 - \beta)d(z, u) + \beta d(z, v) \tag{2.4}$$

$$2.d(H(u,v,\beta)), H(u,v,\gamma) = |\beta - \gamma|d(u,v)$$

$$3.H(u,v,\beta) = H(v,u,1-\beta)$$

$$4.d(H(u,z,\beta),H(v,w,\beta)) \le (1-\beta)d(u,v) + \beta d(z,w)$$

Definition 2.6. A Hyperbolic space (X,d,H) is said to be uniformly convex if for any r > 0 and $\varepsilon \in (0,2]$, there exists a $\delta \in (0,1]$ such that for all $u,x,y \in X$,

$$d(H(x,y,\frac{1}{2}),u) \le (1-\delta)r \tag{2.5}$$

provided $d(x,u) \le r, d(y,u) \le r$ and $d(x,y) \ge \varepsilon r$

Let (X,d,H) be a *uniformly convex Hyperbolic space*, K be a nonempty closed subset of X and $P: X \to K$ be a nonexpansive retraction of X onto K.

Let $S_1, S_2 : K \to K$ be two asymptotically nonexpansive self-mappings and $T_1, T_2 : K \to X$ be two asymptotically nonexpansive nonself-mappings. For $n \ge 1$, we define

$$\begin{cases} x_1 & \in K \\ x_{n+1} & = P(H(S_1^n x_n, T_1(PT_1)^{n-1} y_n, \alpha_n)) \\ y_n & = P(H(S_2^n x_n, T_2(PT_2)^{n-1} x_n, \beta_n)) \end{cases}$$
(2.6)

 $\{\alpha_n\}$ and $\{\beta_n\}$ being two real sequences in [0,1)

Note 2.7. The common fixed points of S_1, S_2, T_1 and T_2 is denoted by F_{cp} , where, $F_{cp} = F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2)$

Lemma 2.8. If the condition, $a_{n+1} \leq (1+b_n)a_n + c_n$ is satisfied for any three nonnegative sequences $\{a_n\}, \{b_n\}$ and $\{c_n\}$ and for each $n \geq n_0$, where n_0 is some nonnegative integer with $\sum\limits_{n=n_0}^{\infty} b_n < \infty$ and $\sum\limits_{n=n_0}^{\infty} c_n < \infty$, then $\lim\limits_{n \to \infty} a_n$ exists.

Lemma 2.9. Suppose $\{x_n\}$ and $\{y_n\}$ are two sequences of a uniformly convex Hyperbolic space (X, d, H) such that, for $R \in [0, \infty)$,

$$\lim_{n\to\infty} \sup d(x_n, a) \le R, \lim_{n\to\infty} \sup d(y_n, a) \le R \text{ and}$$

$$\lim_{n\to\infty} d(H(x_n, y_n, \alpha_n)) = R \text{ where } \alpha_n \in [a, b] \text{ with}$$

$$0 < a \le b < 1, \text{ then we have, } \lim_{n\to\infty} d(x_n, y_n) = 0$$

3. Main Results

In this section, we consider a uniformly convex hyperbolic space (X,d,H) and prove a strong convergence theorem for X, using the iterative scheme given in (2.6)

Lemma 3.1. Let (X,d,H) be a real uniformly convex Hyperbolic space and K be a nonempty closed convex subset of X. Let $S_1,S_2:K\to K$ be two asymptotically

nonexpansive selfmappings with $\{k_n^{(1)}\}, \{k_n^{(2)}\} \subset [1, \infty)$ and $T_1, T_2: K \to X$ be two asymptotically nonexpansive nonselfmappings with $\{l_n^{(1)}\}, \{l_n^{(2)}\} \subset [1, \infty)$ such that,

$$\sum_{n=1}^{\infty} (k_n^{(i)} - 1) < \infty \text{ and } \sum_{n=1}^{\infty} (l_n^{(i)} - 1) < \infty \text{ for } i = 1, 2,$$
respectively and $F_{cp} = F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2) \neq \emptyset$.
Let $\{x_n\}$ be a sequence defined by (2.3) where $\{\alpha_n\}$ and $\{\beta_n\}$ are two real sequences in $[0, 1)$. Then,

$$\lim_{n\to\infty} d(x_n,q)$$
 exists for any $q\in F_{cp}$;

Proof. (1) Using (2.1) and (2.3) and setting $h_n = max\{k_n^{(1)}, k_n^{(2)}l_n^{(1)}, l_n^{(2)}\}$

we have,

$$d(y_{n},q) = d\left(P(H(S_{2}^{n}x_{n}, T_{2}(PT_{2})^{n-1}x_{n}, \beta_{n})), q\right)$$

$$\leq d\left(H(S_{2}^{n}x_{n}, T_{2}(PT_{2})^{n-1}x_{n}, \beta_{n}), q\right)$$

$$\leq (1 - \beta_{n})d(q, S_{2}^{n}x_{n}) + \beta_{n}d(q, T_{2}(PT_{2})^{n-1}x_{n})$$

$$\leq (1 - \beta_{n})d(S_{2}^{n}q, S_{2}^{n}x_{n}) + (3.1)$$

$$\beta_{n}d(T_{2}(PT_{2})^{n-1}q, T_{2}(PT_{2})^{n-1}x_{n})$$

$$\leq (1 - \beta_{n})h_{n}d(q, x_{n}) + \beta_{n}h_{n}d(q, x_{n})$$

$$\leq h_{n}d(q, x_{n})$$
(3.2)

Also,

$$d(x_{n+1},q) = d\left(P(H(S_{1}^{n}x_{n},T_{1}(PT_{1})^{n-1}y_{n},\alpha_{n})),q\right)$$

$$= d\left(P(H(S_{1}^{n}x_{n},T_{1}(PT_{1})^{n-1}),\alpha_{n}),q\right)$$

$$= d\left(P(H(S_{2}^{n}x_{n},T_{2}(PT_{2})^{n-1}x_{n},\beta_{n})),\alpha_{n}),q\right)$$

$$\leq d\left(H(S_{1}^{n}x_{n},T_{1}(PT_{1})^{n-1}),\alpha_{n},q\right)$$

$$\leq (1-\alpha_{n})d(q,S_{1}^{n}x_{n}) + \alpha_{n}d(q,T_{1}(PT_{1})^{n-1})$$

$$(3.5)$$

$$[H(S_{2}^{n}x_{n},T_{2}(PT_{2})^{n-1}x_{n},\beta_{n})],\alpha_{n},q)$$

$$\leq (1-\alpha_{n})d(q,S_{1}^{n}x_{n}) + \alpha_{n}d(q,T_{1}(PT_{1})^{n-1},\alpha_{n},\beta_{n})]$$

$$\leq (1-\alpha_{n})d(q,x_{n}) + \alpha_{n}d(q,x_{n})$$

$$(3.6)$$

$$(using(3.2))$$

$$< (1+h_{n}^{2}-1)d(q,x_{n})$$

$$(3.7)$$

By the hypothesis, $\sum\limits_{n=1}^{\infty}(k_n^i-1)<\infty$ and $\sum\limits_{n=1}^{\infty}(l_n^i-1)<\infty$ for i=1,2. Therefore, $\sum\limits_{n=1}^{\infty}(h_n^2-1)<\infty$, for i=1,2. Using lemma 2.8, $\lim\limits_{n\to\infty}d(x_n,q)$ exists.

Lemma 3.2. Let (X,d,W) be a real uniformly convex Hyperbolic space and K be a nonempty closed convex subset of X. Let $S_1,S_2:K\to K$ be two asymptotically nonexpansive selfmappings with $\{k_n^{(1)},k_n^{(2)}\}\subset [1,\infty)$ and $T_1,T_2:K\to X$ be two asymptotically nonexpansive nonself-mappings with $\{l_n^{(1)},l_n^{(2)}\}\subset [1,\infty)$ such that $\sum\limits_{n=1}^{\infty}(k_n^{(i)}-1)<\infty$ and

$$\sum_{n=1}^{\infty} (l_n^{(i)} - 1) < \infty \text{ for } i = 1, 2. \text{ respectively, and}$$

$$F_{cp} = F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2) \neq \phi. \text{ Let } \{x_n\} \text{ be the sequence defined by } (2.6) \text{ and the following conditions hold:}$$

- (i) $\{\alpha_n\}$ and $\{\beta_n\}$ are two real sequences in $[\varepsilon, 1-\varepsilon]$ for some $\varepsilon \in (0,1)$
- (ii) $d(x,T_iy) \le d(S_ix,T_iy)$ for all $x,y \in K$ and i = 1,2.

Then
$$\lim_{n\to\infty} d(x_n, S_i x_n) = \lim_{n\to\infty} d(x_n, T_i x_n) = 0$$
 for $i = 1, 2$.

Proof. For any given $q \in F_{cp}$, $\lim_{n \to \infty} d(x_n, q)$ exists, by lemma 3.1,

Taking
$$h_n = \max\{k_n^{(1)}, k_n^{(2)}, l_n^{(1)}, l_n^{(2)}\}$$

Suppose $\lim_{n \to \infty} d(x_n, q) = c$

By (3.7) and
$$\sum_{n=1}^{\infty} (h_n^2 - 1) < \infty$$
, we have,

$$\lim_{n \to \infty} d(H(S_1^n x_n, T_1(PT_1)^{n-1} y_n, \alpha_n), q) = c$$

and

$$\lim_{n\to\infty}\sup d(S_1^nx_n,q)\leq \lim_{n\to\infty}\sup h_nd(x_n,q)=c$$

Taking \limsup on both sides of (3.2) we obtain,

$$\lim_{n\to\infty}\sup d(y_n,q)\leq c$$

and so we have,

$$\lim_{n\to\infty}\sup d\left(T_1(PT_1)^{n-1}y_n,q\right)\leq \lim_{n\to\infty}\sup h_nd(y_n,q)=c$$

By lemma 2.9 we thus have,

$$\lim_{n \to \infty} d\left(S_1^n x_n, T_1(PT_1)^{n-1} y_n\right) = 0$$
(3.8)

By condition (ii) and from (3.7) we get,

$$d(x_n, T_1(PT_1)^{n-1}y_n) \le d(S_1^n x_n, T_1(PT_1)^{n-1}y_n)$$

and thus

$$\lim_{n \to \infty} d(x_n, T_1(PT_1)^{n-1}y_n) = 0$$
(3.9)

Also

$$d(x_n,q) \le d(x_n,T_1(PT_1)^{n-1}y_n) + d(T_1(PT_1)^{n-1}y_n,q)$$

and

$$d(T_1(PT_1)^{n-1}y_n, q) \le h_n d(y_n, q)$$

which implies,

$$d(x_n,q) \le d(x_n,T_1(PT_1)^{n-1}y_n) + h_n^n d(y_n,q)$$

In the above inequality taking infimum on both sides and applying (3.9) we obtain.

$$\lim_{n\to\infty}\inf d(y_n,q)\geq c$$

and

$$\lim_{n\to\infty}\sup d(y_n,q)\leq c$$

Therefore,
$$\lim_{n\to\infty} d(y_n,q) = c$$

Using the arguments in (3.1) and by $\sum_{n=1}^{\infty} (h_n^2 - 1) < \infty$ we have,

$$\lim_{n \to \infty} d(H(S_2^n x_n, T_2(PT_2)^{n-1} x_n, \beta_n), q) = c$$

and

$$\lim_{n\to\infty}\sup d(S_2^nx_n,q)\leq \lim_{n\to\infty}\sup h_nd(x_n,q)=c$$

Also,

$$\lim_{n\to\infty}\sup d(T_2(PT_2)^{n-1}x_n,q)\leq \lim_{n\to\infty}\sup h_nd(x_n,q)=c$$

Applying by Lemma 2.9, again we have,

$$\lim_{n \to \infty} d\left(S_2^n x_n, T_2(PT_2)^{n-1} x_n\right) = 0 \tag{3.10}$$

From condition (ii) and (3.10) we get,

$$d(x_n, T_2(PT_2)^{n-1}x_n) \le d(S_2^n x_n, T_2(PT_2)^{n-1}x_n)$$

which means

$$\lim_{n \to \infty} d(x_n, T_2(PT_2)^{n-1} x_n) = 0$$
(3.11)

 $P: X \to K$ is a nonexpansive retraction of X onto K and also $S_2^n x_n = P(S_2^n x_n)$ we get,

$$d(y_n, S_2^n x_n) \le \beta_n d(S_2^n x_n, T_2(PT_2)^{n-1} x_n)$$

and hence by (3.5)

$$\lim_{n \to \infty} d(y_n, S_2^n x_n) = 0 \tag{3.12}$$

Considering,

$$d(y_n, x_n) \le d(y_n, S_2^n x_n) + d(S_2^n x_n, T_2(PT)^{n-1} x_n) + d(T_2(PT_2)^{n-1} x_n, x_n)$$

By (3.10), (3.11) and (3.12) we have,

$$\lim_{n \to \infty} d(x_n, y_n) = 0 \tag{3.13}$$

We have,

$$d(S_1^n x_n, T_1(PT_1)^{n-1} x_n) \le d(S_1^n x_n, T_1(PT_1)^{n-1} y_n) + h_n d(y_n, x_n)$$

By (3.8) and (3.13) we hence have,

$$\lim_{n \to \infty} d(S_1^n x_n, T_1(PT_1)^{n-1} x_n) = 0$$
 (3.14)

Therefore,
$$\lim_{n \to \infty} d(x_n, T_1(PT_1)^{n-1}x_n) = 0$$
 (3.15)

We know that,

$$d(x_n, T_1(PT_1)^{n-1}x_n) \le d(S_1^n x_n, T_1(PT_1)^{n-1}x_n)$$

Considering,

$$d(x_{n+1}, S_1^n x_n)$$

$$= d(P(H(S_1^n x_n, T_1(PT_1)^{n-1} y_n, \alpha_n)), S_1^n x_n)$$

$$\leq (1 - \alpha_n) d(S_1^n x_n, S_1^n x_n) +$$

$$\alpha_n d(T_1(PT_1)^{n-1} y_n, S_1^n x_n)$$

$$\leq \alpha_n d(S_1^n x_n, T_1(PT_1)^{n-1} y_n)$$

which implies by (3.8),

$$\lim_{n \to \infty} d(x_{n+1}, S_1^n x_n) = 0 (3.16)$$

Also.

$$d(x_{n+1}, T_1(PT_1)^{n-1}y_n) \le d(x_{n+1}, S_1^n x_n) + d(S_1^n x_n, T_1(PT_1)^{n-1}y_n)$$
 and therefore by (3.8) and (3.16) we have

$$\lim_{n \to \infty} d(x_{n+1}, T_1(PT_1)^{n-1} y_n) = 0$$
(3.17)

Consider

$$d(S_1^n x_n, x_n) \le d(S_1^n x_n, T(PT_1)^{n-1} x_n) + d(T_1(PT_1)^{n-1} x_n, x_n)$$

By (3.9) and (3.10) we have,

$$\lim_{n\to\infty} d(S_1^n x_n, x_n) = 0$$

Since

$$d(S_1^n x_n, T_2(PT_2)^{n-1} x_n) \le d(S_1^n x_n, x_n) + d(x_n, T_2(PT)^{n-1} x_n),$$
we have from (3.6),

$$\lim_{n \to \infty} d\left(S_1^n x_n, T_2(PT_2)^{n-1} x_n\right) = 0 \tag{3.18}$$

Also,

$$d(x_{n+1}, T_2(PT_2)^{n-1}y_n)$$

$$\leq d(x_{n+1}, S_1^n x_n)$$

$$+ d(S_1^n x_n, T_2(PT_2)^{n-1}x_n) + d(T_2(PT_2)^{n-1}x_n, y_n)$$

Thus, by (3.8),(3.11) and (3.13),

$$\lim_{n \to \infty} d(x_{n+1}, T_2(PT_2)^{n-1}y_n) = 0$$
(3.19)

 T_1 and T_2 are asymptotically nonexpansive nonself-mappings and we know that

$$(PT_i)(PT_i)^{n-2}y_{n-1}, x_n \in K \text{ for } i = 1, 2. \text{ Hence, we have,}$$

$$d(T_{i}(PT_{i})^{n-1}y_{n-1}, T_{i}x_{n})$$

$$= d(T_{i}[(PT_{i})(PT_{i})^{n-2}y_{n-1}], T_{i}(Px_{n}))$$

$$\leq h_{n}d((PT_{i})(PT_{i})^{n-2}y_{n-1}, Px_{n})$$

$$\leq h_{n}d(T_{i}(PT_{i})^{n-2}y_{n-1}, x_{n})$$
(3.20)

For i = 1, 2 using (3.12) and (3.14) in (3.15) we obtain,

$$\lim_{n \to \infty} d(T_i(PT_i)^{n-1} y_{n-1}, T_i x_n) = 0$$
(3.21)

and we take,

$$d(x_{n+1}, y_n) \le d(x_{n+1}, T_1(PT_1)^{n-1}y_n) + d(T_1(PT_1)^{n-1}y_n, x_n) + d(x_n, y_n)$$

Substituting (3.4),(3.8) and (3.12) in the above inequality, we get,

$$\lim_{n \to \infty} d(x_{n+1}, y_n) = 0 \tag{3.22}$$

For $i = 1, 2, d(x_n, T_i x_n)$ can be written as follows,

$$d(x_n, T_i x_n) \le d(x_n, T_i (PT_i)^{n-1} x_n)$$

$$+ d(T_i (PT_i)^{n-1} x_n, T_i (PT_i)^{n-1} y_{n-1})$$

$$+ d(T_i (PT_i)^{n-1} y_{n-1}, T_i x_n)$$

$$\le d(x_n, T_i (PT_i)^{n-1} x_n) + h_n d(x_n, y_{n-1})$$

$$+ d(T_i (PT_i)^{n-1} y_{n-1}, T_i x_n)$$

By (3.6),(3.10),(3.16) and(3.17) we have,

$$\lim_{n \to \infty} d(x_n, T_1 x_n) = \lim_{n \to \infty} d(x_n, T_2 x_n) = 0$$
 (3.23)

The first part of the theorem is hence proved. We prove the next part of the theorem, ie.,

$$\lim_{n\to\infty} d(x_n, S_1x_n) = \lim_{n\to\infty} d(x_n, S_2x_n) = 0$$

By condition (ii) of the theorem for $i = 1, 2$ we have,

$$d(x_{n}, S_{i}x_{n}) \leq d(x_{n}, T_{i}(PT_{i})^{n-1}x_{n}) + d(T_{i}(PT_{i})^{n-1}x_{n}, S_{i}x_{n})$$

$$(or)$$

$$d(x_{n}, S_{i}x_{n}) \leq d(x_{n}, T_{i}(PT_{i})^{n-1}x_{n}) + d(S_{i}x_{n}, T_{i}(PT_{i})^{n-1}x_{n})$$

$$\leq d(x_{n}, T_{i}(PT_{i})^{n-1}x_{n}) + d(S_{i}^{n}x_{n}, T_{i}(PT_{i})^{n-1}x_{n})$$

Thus by (3.5), (3.6), (3.9) and (3.10) we see that,

$$\lim_{n \to \infty} d(x_n, S_1 x_n) = \lim_{n \to \infty} d(x_n, S_2 x_n) = 0$$
(3.24)

Hence the required second part of the theorem is proved. \Box

Theorem 3.3. Considering the assumption in lemma 3.2 and if one of S_1, S_2, T_1 and T_2 is completely continuous after that the sequence $\{x_n\}$ defined by 2.6 converges Strongly to a point in F_{cp} .

Proof. Let S_1 be completely continuous.

By lemma 3.1, $\{x_n\}$ is bounded.

Which means, there is a subsequence $\{S_1x_{n_j}\}$ of $\{S_1x_n\}$ such that $\{S_1x_{n_j}\}$ converges strongly to some $q^* \in K$. Moreover, By lemma 3.2, we have,

$$\lim_{j \to \infty} d(x_{n_j}, S_1 x_{n_j}) = \lim_{j \to \infty} d(x_{n_j}, S_2 x_{n_j}) = 0 \text{ and}$$

$$\lim_{j \to \infty} d(x_{n_j}, T_1 x_{n_j}) = \lim_{j \to \infty} d(x_{n_j}, T_2 x_{n_j}) = 0$$

which implies that,

$$d(x_{n_j},q^*) \le d(x_{n_j},S_1x_{n_j}) + d(S_1x_{n_j},q^*) \to 0$$
 as $j \to \infty$ and so $x_{n_j} \to q^* \in K$.

$$d(q^*, S_i q^*) = \lim_{j \to \infty} d(x_{n_j}, S_i x_{n_j}) = 0$$

But S_1, S_2, T_1 and T_2 are continuous, for i = 1, 2. By lemma 3.2, therefore we have

$$d(q^*, T_i q^*) = \lim_{i \to \infty} d(x_{n_i}, T_i x_{n_i}) = 0$$

which implies $q^* \in F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2) = F_{cp}$ By lemma 3.1, $\lim_{n \to \infty} d(x_n, q)$ exists for $q \in F_{cp}$ Thus $\lim_{n \to \infty} d(x_n, q^*)$ exists and $\lim_{n \to \infty} d(x_n, q^*) = 0$ Hence the proof .

References

- [1] Goebel, K, Kirk, WA, A fixed point theorem for asymptotically nonexpansive mapping, *Proc. Amer. Math. Soc.*, 35(1972), 171–174.
- ^[2] Chang, S.S, Cho, Y.J, Zhou, H.Y, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, *J. Korean Math. Soc.*, 38(2001), 1245–1260.
- ^[3] Chang, S.S, Tan, K.K, Lee, H.W.J, Chan, C.K, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, *J. Math. Anal. Appl.*, 313(2006), 273–283.
- ^[4] Cho, Y.J, Kang, J.I, Zhou, H.Y, Approximating common fixed points of asymptotically nonexpansive mappings, *Bull. Korean Math. Soc.*, 42(2005), 661–670.
- [5] Cho, Y.J, Zhou, H.Y, Guo, G.T, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, *Comput. Math. Appl.*, 47(2004), 707–717.
- [6] Chen. W, Guo. W, Convergence theorems for two finite families of asymptotically nonexpansive mappings, *Math. Comput. Model.*, 54(2011), 1311–1319.
- [7] Guo, W, Cho, Y.J, On strong convergence of the implicit iterative processes with errors for a finite family of asymptotically nonexpansive mappings, *Appl. Math. Lett.*, 21(2008), 1046–1052.
- ^[8] Schu, J, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, *Bull. Aust. Math. Soc.*, 43(1991), 153–159.
- Zhou, Y.Y, Chang, S.S, Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces, *Numer. Funct. Anal, Optim.*, 23(2002), 911–921.
- [10] Chidume, C.E, Ofoeau, E.U, Zegeye, H, Strong and weak convergence theorems for asymptotically nonexpansive mappings, *J. Math. Anal. Appl.*, 280(2003), 364–374.

- [11] Wang, L, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math. Anal. Appl., 323(2006), 550–557.
- [12] Guo, W, Weak convergence theorems for asymptotically nonexpansive mappings, *J. Math. Anal. Math. Lett.*, 24(2011), 2181–2185.
- [13] Pathak, H.K, Cho, Y.J, Kang, S.M, Strong and weak convergence theorems for nonself-asymptotically perturbed nonexpansive mappings, *Nonlinear Anal.*, 70(2009), 1929–1938.
- [14] Zhou, H.Y, Cho, Y.J, Kang, S.M, A new iterative algorithm for approximating common fixed points for asymptotically nonexpansive mappings, *Fixed Point Theory Appl.*, 2007, Article ID 64974(2007).
- [15] Sun, Z.H, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, *J. Math. Anal. Appl.*, 286(2003), 351–358.
- [16] Falset, J.G, Kaczor, W, Kuczumow, T, Reich, S, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, *Nonlinear Anal.*, 43(2001), 377–401.
- [17] Suanoom Cholatis, Klin-eam Chakkrid, Remark on fundamentally non-expansive mappings in hyperbolic spaces, *J. Nonlinear Sci. Appl.*, 9(2016), 1952–1956.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
